Если с - постоянное число, и u = u(x), v = v(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

1) (с) ' = 0, (cu) ' = cu';

2) (u+v)' = u'+v';

3) (uv)' = u'v+v'u;

4) (u/v)' = (u'v-v'u)/v2;

5) если y = f(u),


1. (um)' = m um-1 u' (m принадлежит R1 )

2. (au)' = au lna× u'.

3. (eu)' = eu u'.

4. (loga u)' = u'/(u ln a).

5. (ln u)' = u'/u.

6. (sin u)' = cos u× u'.

7. (cos u)' = - sin u× u'.

8. (tg u)' = 1/ cos2u× u'.

9.(ctg u)' = - u' / sin2u.

10. (arcsin u)' = u' /.

11. (arccos u)' = - u' /.

12. (arctg u)' = u'/(1 + u2).

13. (arcctg u)' = - u'/(1 + u2).


Первообразная